skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Han, Xi"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Free, publicly-accessible full text available June 10, 2026
  2. null (Ed.)
    An accurate sense of elapsed time is essential for the safe and correct operation of hardware, software, and networked systems. Unfortunately, an adversary can manipulate the system's time and violate causality, consistency, and scheduling properties of underlying applications. Although cryptographic techniques are used to secure data, they cannot ensure time security as securing a time source is much more challenging, given that the result of inquiring time must be delivered in a timely fashion. In this paper, we first describe general attack vectors that can compromise a system's sense of time. To counter these attacks, we propose a secure time architecture, TIMESEAL that leverages a Trusted Execution Environment (TEE) to secure time-based primitives. While CPU security features of TEEs secure code and data in protected memory, we show that time sources available in TEE are still prone to OS attacks. TIMESEAL puts forward a high-resolution time source that protects against the OS delay and scheduling attacks. Our TIMESEAL prototype is based on Intel SGX and provides sub-millisecond (msec) resolution as compared to 1-second resolution of SGX trusted time. It also securely bounds the relative time accuracy to msec under OS attacks. In essence, TIMESEAL provides the capability of trusted timestamping and trusted scheduling to critical applications in the presence of a strong adversary. It delivers all temporal use cases pertinent to secure sensing, computing, and actuating in networked systems. 
    more » « less